

LLMs for Extremely Low-Resource Finno-Ugric Languages

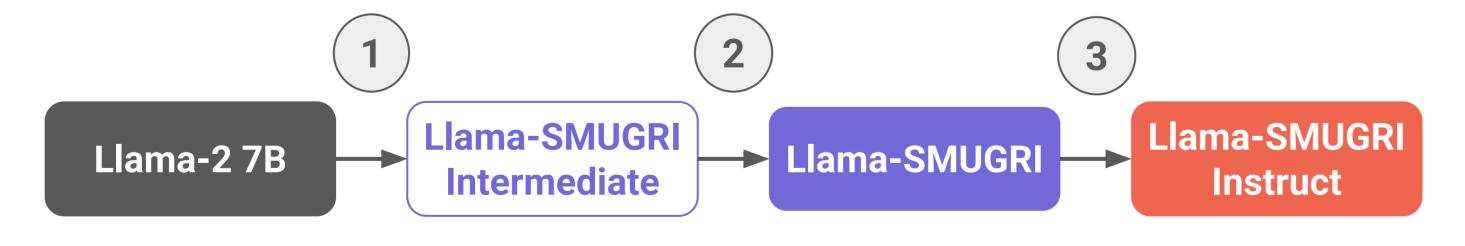
Taido Purason*, Hele-Andra Kuulmets*, Mark Fishel

This work develops multilingual LLMs for Võro, Livonian, and Komi—three extremely low-resource (XLR) Finno-Ugric languages. Key contributions include the creation of Llama-SMUGRI models, new evaluation benchmarks, and extensive human evaluation. Our models achieve competitive performance with GPT-3.5-turbo in helpfulness and surpass it in naturalness.

Languages

Benchmarks

SIB-200 → SIB-SMUGRI (topic classification)


Belebele → Belebele-SMUGRI (MCQA)

We partially **extend existing benchmarks** to cover Livonian, Võro, and Komi.

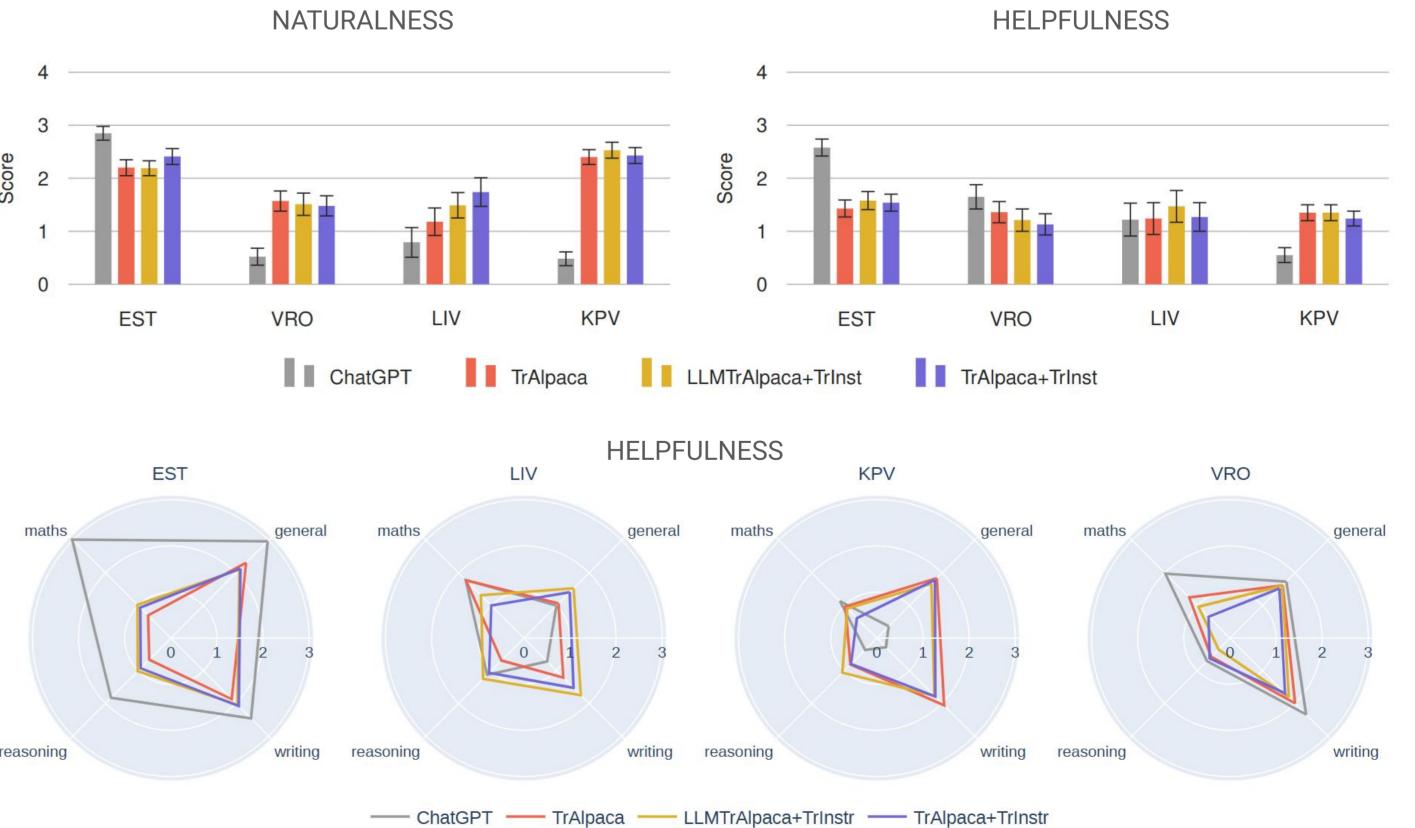
SMUGRI-MT-Bench [NEW]

We **create a novel multi-turn conversational benchmark** for evaluating LLMs in Võro, Livonian, and Komi using 80 real-world prompts covering *math*, *reasoning*, *writing*, and *general* topics. It enables human assessment of model performance in these low-resource languages.

Training methodology

- Continued pre-training on high-resource supporting languages (ET, FI, EN, RU, LV) for 10B tokens.
- Continued pre-training on XLR Finno-Ugric languages, supporting languages, and parallel data for 3B characters, repeating the XLR data at most 4 times.
- Instruction-tuning on machine translated and supporting language instructions.

Results


Model	SIB-SMUGRI 5-shot, acc			BELEBELE-SMUGRI 3-shot, acc			FLORES-SMUGRI 5-shot, BLEU					
	VRO	LIV	KPV	VRO	LIV	KPV	ET-VRO	ET-LIV	RU-KPV	VRO-ET	LIV-ET	KPV-RU
Llammas-base	78.4 (3.7)	69.6 (4.1)	64.0 (4.3)	30.7 (4.1)	28.4 (4.0)	32.3 (4.2)	11.5 (0.9)	4.3 (0.5)	1.7 (0.4)	28.7 (1.5)	8.0 (0.8)	2.2 (0.3)
Llama-2-7B	57.6 (4.4)	60.0 (4.4)	58.4 (4.4)	29.1 (4.1)	29.9 (4.1)	36.2 (4.3)	11.1 (1.0)	4.6 (0.6)	1.5 (0.3)	11.3 (0.9)	4.4 (0.6)	2.4 (0.3)
Llama-SMUGRI	(ours)											
Stage 1	80.8 (3.5)	75.2 (3.9)	65.6 (4.3)	32.3 (4.2)	26.8 (3.9)	26.0 (3.9)	11.5 (1.0)	4.2 (0.5)	2.6 (0.6)	29.6 (1.4)	7.2 (0.7)	4.1 (0.7)
Stage 2	78.4 (3.7)	65.6 (4.3)	74.4 (3.9)	31.5 (4.1)	26.0 (3.9)	28.4 (4.0)	26.5 (1.1)	3.4 (0.4)	15.7 (1.0)	45.3 (1.5)	10.6 (0.9)	18.6 (0.9)
Stage 2 + parallel	84.0 (3.3)	66.4 (4.2)	76.8 (3.8)	35.4 (4.3)	27.6 (4.0)	29.1 (4.1)	29.1 (1.2)	4.3 (0.5)	16.0 (1.0)	48.7 (1.4)	17.6 (1.0)	22.1 (1.3)

Continued pre-training stage 1 positively affects some discriminative benchmark scores while in stage 2 the model learns to generate text in those languages.

Model	BEL	O-shot, acc	JGRI	SIB-SMUGRI 5-shot, acc			
	VRO	LIV	KPV	VRO	LIV	KPV	
GPT-3.5-turbo	45.7 (4.4)	37.8 (4.3)	34.6 (4.2)	81.6 (3.5)	73.6 (4.0)	68.8 (4.2)	
GPT-4-turbo	70.1 (4.1)	40.2 (4.3)	44.1 (4.4)	92.0 (2.5)	72.0 (4.0)	67.2 (4.2)	
Llammas (Kuulmets et al., 2024)	36.2 (4.3)	32.3 (4.2)	27.6 (4.0)	80.8 (3.5)	78.4 (3.7)	63.2 (4.3	
Llama-SMUGRI-Instruct							
SupInst	42.5 (4.4)	30.7 (4.1)	44.1 (4.4)	86.4 (3.1)	79.2 (3.6)	88.8 (2.8)	
SupInst+LLMTrAlpaca	39.4 (4.3)	35.4 (4.3)	42.5 (4.4)	85.6 (3.1)	81.6 (3.5)	84.8 (3.2)	
SupInst+TrAlpaca	35.4 (4.2)	32.3 (4.2)	40.2 (4.3)	85.6 (3.1)	79.2 (3.6)	85.6 (3.1)	
SupInst+LLMTrAlpaca+TrInst	44.9 (4.4)	40.9 (4.4)	44.1 (4.4)	86.4 (3.1)	76.0 (3.8)	78.4 (3.7)	
SupInst+TrAlpaca+TrInst	45.7 (4.4)	32.3 (4.2)	44.1 (4.4)	86.4 (3.1)	78.4 (3.7)	78.4 (3.7)	

Automatic evaluation on the instruction-tuned models reveals that *GPT-4-turbo* outperforms our models on Võro, while our models are competitive on the other languages.

Human evaluation

Our models achieve **higher naturalness than GPT-3.5-turbo** with competitive helpfulness — often outperforming GPT-3.5-turbo in *general* and *writing* tasks.

